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Magic angle spinning (MAS) NMR s rapidly developing as a p-subunit
technigue to resolve structure in biological systénigAn important -
step in solving structure with solid-state NMR is the detection of \ ,
distance constraints, in addition to the chemical shift assignfnéht. e, 1 ) j
For small molecules that form ordered aggregates, this is becoming
routine!! For proteins or amyloid systems havifigsheet motifs, 19
detection of correlations between backbone carbons from adjacent P &
chains is sometimes possible usit¥§ spin diffusiont?-14 Mem- !
brane proteins are generally comprisedefelical segments with |
narrow shift dispersion, and the inter-helical distances between ot .
adjacent segments are too large to be bridged by convenfi¥hal Y / : "_‘.7‘ v
spin diffusion. Contacts between a ligand and side chains have been s 1Yo Ra 3
detected, however, without a specific assignnierih addition, : L e Bas0
resolving structure from secondary shifts is not always possible,
and the lack of access to distance restraints is a severe limitdtion. -

Here we demonstrate for a helical transmembrane protein -;:ufh“""
complex that it is possible to get access to four classes of distance
constraints: (i) along the helix for assignment of signals, (i)
between helix side chains and cofactors, (iii) between amino acids
of two subunits that form the monomer, and (iv) between amino
acids of different monomers, paving the way for access to structure Figure 1. The structure of two monomeric units of the LH2 complex
of complexes, such as secondary, tertiary, and quaternary structureqerived from the 1NKZ PDB filé8 The 3B850 cofactor is not shown. The

I tacts betw th tei d cofact th red arrow indicates the pair, corresponding to an inter-helical inter-
as well as contacts between the protein and colactors or Other ., ,omeric correlation between theV10 ando,A13 residues; the green

ligands. The model system we use is the photosynthetic light- arrow shows inter-helical intra-monomeric correlations betweergi®
harvesting 2 (LH2) protein complex from the anaeroBicodo- andoP12 residues; the orange arrows indicate cofaatesidue contacts
pseudomona@Rps) acidophilastrain 10050 purple bacteriutfr1é between thexB850 co_factor and th6H30_ rgsidue as well as Fhe B$OO
A sequence-specific assignment of the NMR response was rece_ntlyfgé%cégr;?iﬁ tlignrsegglr’]‘;; t?]r;dhtehlie)(.remammg blue arrows point to inter-
obtained for 76 of the 94 residues of the monomeric unit, and getting

a structure from shifts is not possiBfeThe LH2 complex comprises  possible to detect through-space long-range intermolecular correla-
a circular aggregate of nine identical monomeric units, each tions between the twar-helical membrane spanning segments
monomer a complex of twa-helical membrane spanning segments, which make up the monomeric unit of the LH2 complex as well as
that is, theo-subunit (53 residues) afdsubunit (41 residues) and  through-space correlations between the amino acid residues and
enclosing three Bacteriochlorophwl(BChl a) cofactors. the labeled BChh via *H—H spin diffusion.

The profusion of protons which are in close proximity within The 3C-enriched samples were obtained biosynthetically by
the helix and more specifically between side chains in adjoining growing the bacteria anaerobically in light at 30 on a defined
helical segments makébl—1H spin diffusion a viable option for medium. The pattern labeleC LH2 sample (2.3-LH2) was
identifying inter-helical constraints in the LH2 compl&The prepared by using isotopically labeled [2%]-succinic acid as
favorable polarization properties #fi combined with the spectral  the nutrient source in the expression medium. The procedures for
resolution of'3C nuclei in the 2D"¥*C—3C magic angle spinning  the sample preparation and the labeling patterns of all the amino
(MAS) CHHCI/CP experiment have been used successfully in the acids and the BCha cofactors in the U-LH2 and 2.3-LH2 samples
past to resolve a model for the 3D stacking in self-aggregated, have been described in detail elsewhre.
uniformly enriched chlorophyle/H,O and for the 3D structure Two-dimensional CHHC/CHsee ref 23) spectra were recorded
determination ofs-sheet polypeptide®?®-23 Recently, there has  at'H diffusion times of 200 and 32&s for the U-LH2 sample and
been a discussion going on as to whether or not long-rdHge  at 250 and 32&s for the 2.3-LH2 sample. A detailed experimental
transfer between helical segments is truncated by relayed intra-section has been given in the Supporting Information. Characteristic
helical transfer. In this study, we demonstrate that by using the datasets for the U-LH2 sample are shown in Figure 2 and in Figure
CHHC/CPE experiment on uniformly’3C labeled as well as  S2 for the 2.3-LH2 sample.
biosynthetic site-specifi¢3C pattern labeled samples of the LH2 For the CHHC/CP H spin diffusion experiment, an effective
complex at very short mixing times (26@50us) it is very well maximum H—!H transfer ranged,a.x of ~3.0 A has been
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Figure 2. Aliphatic region of a CHHC/CP dataset collected from the
U-LH2 sample ato,/27 = 12 000 Hz and with 20@s 'H—H spin diffusion
mixing time.

experimentally determined from a wide range of intra-residGe-

13C cross-peaks usind—'H mixing times of 200-350 us 222526
The CHHC/CP spectra of the U-LH2 sample for a short mixing
time of 200us give us over 30 additional unique cross-peaks when
compared to the 2B°C—13C proton-driven spin diffusion dataset
published previously for a 50 ms mixing tim@?? A few of these

experiment helps to discriminate between intra-helical and inter-
helical constraints. This leads to the identification of new through-
space distance constraints and an improved chemical shift assign-
ment of a helical membrane protein complex, which is the next
logical step toward determination of its secondary, tertiary, and
quaternary structure, along with proteicofactor interactions.
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andfT2 in theS-subunit of a single monomer. Due to the reduced
labeling of the 2.3-LH2 sample, the CHHC/E8pectrum is less
crowded and better resolved for a short mixing time of 250By
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